Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 930
Filtrar
1.
Clin Anat ; 37(1): 81-91, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37424380

RESUMO

Biopsies have been acquired from living men and women to determine proportions of Type I (slow-twitch) and II (fast-twitch) skeletal muscle fibers since the 1970s. Sex differences have been assumed but the literature has not been submitted to meta-analysis. Here, the aim was to generate effect sizes of sex differences in muscle fiber cross-sectional areas, distribution percentages, and area percentages. Data from 2875 men and 2452 women, who participated in 110 studies, were analyzed. Myofibrillar adenosine triphosphatase histochemistry was used in 71.8% of studies to classify fibers as Type I, II, IIA, and/or IIX; immunohistochemistry, immunofluorescence, or sodium dodecyl sulfate-polyacrylamide gel electrophoresis were used in 35.4% of studies to similarly classify myosin heavy chain (MHC) isoform content. Most studies involved biopsies from vastus lateralis (79.1%) in healthy individuals (92.7%) between 18 and 59 years old (80.9%). Men exhibited greater cross-sectional areas for all fiber types (g = 0.40-1.68); greater distribution percentages for Type II, MHC II, IIA, IIX fibers (g = 0.26-0.34); greater area percentages for Type II, IIA, MHC IIA, IIX fibers (g = 0.39-0.93); greater Type II/I and Type IIA/I fiber area ratios (g = 0.63, 0.94). Women exhibited greater Type I and MHC I distribution percentages (g = -0.13, -0.44); greater Type I and MHC I area percentages (g = -0.53, -0.69); greater Type I/II fiber area ratios (g = -1.24). These data, which represent the largest repository of comparative muscle fiber type data from living men and women, can inform discussions about biological sex and its impact on pathologies and sports performance (e.g., explaining sex differences in muscle strength and muscle endurance).


Assuntos
Fibras Musculares Esqueléticas , Caracteres Sexuais , Feminino , Humanos , Masculino , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/fisiologia , Cadeias Pesadas de Miosina/análise , Músculo Quadríceps , Biópsia , Músculo Esquelético/fisiologia
2.
Genes (Basel) ; 14(8)2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37628600

RESUMO

The Huai pig is a well-known indigenous pig breed in China. The main advantages of Huai pigs over Western commercial pig breeds include a high intramuscular fat (IMF) content and good meat quality. There are significant differences in the meat quality traits of the same muscle part or different muscle parts of the same variety. To investigate the potential genetic mechanism underlying the meat quality differences in different pig breeds or muscle groups, longissimus dorsi (LD), psoas major (PM), and biceps femoris (BF) muscle tissues were collected from two pig breeds (Huai and Duroc). There were significant differences in meat quality traits and amino acid content. We assessed the muscle transcriptomic profiles using high-throughput RNA sequencing. The IMF content in the LD, PM, and BF muscles of Huai pigs was significantly higher than that in Duroc pigs (p < 0.05). Similarly, the content of flavor amino acids in the three muscle groups was significantly higher in Huai pigs than that in Duroc pigs (p < 0.05). We identified 175, 110, and 86 differentially expressed genes (DEGs) between the LD, PM, and BF muscles of the Huai and Duroc pigs, respectively. The DEGs of the different pig breeds and muscle regions were significantly enriched in the biological processes and signaling pathways related to muscle fiber type, IMF deposition, lipid metabolism, PPAR signaling, cAMP signaling, amino acid metabolism, and ECM-receptor interaction. Our findings might help improve pork yield by using the obtained DEGs for marker-assisted selection and providing a theoretical reference for evaluating and improving pork quality.


Assuntos
Qualidade dos Alimentos , Carne , Fibras Musculares Esqueléticas , Suínos , Transcriptoma , Animais , Aminoácidos/análise , Aminoácidos/biossíntese , Aminoácidos/genética , China , Carne/normas , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/metabolismo , Músculos Paraespinais/química , Músculos Paraespinais/metabolismo , Suínos/genética , Transcriptoma/genética
3.
Anat Histol Embryol ; 52(3): 363-372, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36471656

RESUMO

In this study, the pattern of myosin heavy chain (MHC) isoforms expression in skeletal muscles of the trunk, forelimb and hindlimb in Polar Bear (PB) Ursus maritimus; American Black Bear (AmBB), Ursus americanus and Asian Black Bear (AsBB), Ursus thibetanus was analysed by immunohistochemistry and SDS-PAGE. Results showed that slow (MHC-I) and fast (MHC-II) isoforms exist in muscles of bears. Type II fibres were classified further into Type IIa and IIx in PB but not in AsBB and AmBB. The distribution of Type I and Type II fibres in the trunk, forelimb and hindlimb varied based on muscle type and animal species. The proportions of Type I fibres formed approximately one-third of muscle composition in PB (trunk, 32.0%; forelimb, 34.7%; hindlimb, 34.5%) and a half in both AsBB and AmBB whereas Type IIa and IIx formed approximately two-third in PB (trunk, 68.0%; forelimb, 65.3%; hindlimb, 65.5%) and a half of Type II in both AmBB and AsBB. PB is a good swimmer, lives in Arctic Ocean on slippery ice catching aquatic mammals such as seals and is larger in size compared to the medium sized AmBB (living in forest) and AsBB (arboreal). The results suggest that in bears, there is greater diversity in MHC isoforms II, being expressed in selected fast contracting skeletal muscles in response to variety of environments, weight bearing and locomotion.


Assuntos
Cadeias Pesadas de Miosina , Ursidae , Animais , Cadeias Pesadas de Miosina/análise , Cadeias Pesadas de Miosina/metabolismo , Ursidae/metabolismo , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Isoformas de Proteínas/análise , Isoformas de Proteínas/metabolismo
4.
Neuropathol Appl Neurobiol ; 49(1): e12853, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36180966

RESUMO

AIMS: Target skeletal muscle fibres - defined by different concentric areas in oxidative enzyme staining - can occur in patients with neurogenic muscular atrophy. Here, we used our established hypothesis-free proteomic approach with the aim of deciphering the protein composition of targets. We also searched for potential novel interactions between target proteins. METHODS: Targets and control areas were laser microdissected from skeletal muscle sections of 20 patients with neurogenic muscular atrophy. Samples were analysed by a highly sensitive mass spectrometry approach, enabling relative protein quantification. The results were validated by immunofluorescence studies. Protein interactions were investigated by yeast two-hybrid assays, coimmunoprecipitation experiments and bimolecular fluorescence complementation. RESULTS: More than 1000 proteins were identified. Among these, 55 proteins were significantly over-represented and 40 proteins were significantly under-represented in targets compared to intraindividual control samples. The majority of over-represented proteins were associated with the myofibrillar Z-disc and actin dynamics, followed by myosin and myosin-associated proteins, proteins involved in protein biosynthesis and chaperones. Under-represented proteins were mainly mitochondrial proteins. Functional studies revealed that the LIM domain of the over-represented protein LIMCH1 interacts with isoform A of Xin actin-binding repeat-containing protein 1 (XinA). CONCLUSIONS: In particular, proteins involved in myofibrillogenesis are over-represented in target structures, which indicate an ongoing process of sarcomere assembly and/or remodelling within this specific area of the muscle fibres. We speculate that target structures are the result of reinnervation processes in which filamin C-associated myofibrillogenesis is tightly regulated by the BAG3-associated protein quality system.


Assuntos
Doenças do Sistema Nervoso Periférico , Humanos , Doenças do Sistema Nervoso Periférico/metabolismo , Actinas/análise , Actinas/metabolismo , Proteômica , Proteínas Musculares/metabolismo , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/análise , Proteínas Reguladoras de Apoptose/metabolismo
5.
Neuropathol Appl Neurobiol ; 48(7): e12841, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35894812

RESUMO

AIMS: Patients with dermatomyositis (DM) suffer from reduced aerobic metabolism contributing to impaired muscle function, which has been linked to cytochrome c oxidase (COX) deficiency in muscle tissue. This mitochondrial respiratory chain dysfunction is typically seen in perifascicular regions, which also show the most intense inflammatory reaction along with capillary loss and muscle fibre atrophy. The objective of this study was to investigate the pathobiology of the oxidative phosphorylation deficiency in DM. METHODS: Muscle biopsy specimens with perifascicular COX deficiency from five juveniles and seven adults with DM were investigated. We combined immunohistochemical analyses of subunits in the respiratory chain including complex I (subunit NDUFB8), complex II (succinate dehydrogenase, subunit SDHB) and complex IV (COX, subunit MTCO1) with in situ hybridisation, next generation deep sequencing and quantitative polymerase chain reaction (PCR). RESULTS: There was a profound deficiency of complexes I and IV in the perifascicular regions with enzyme histochemical COX deficiency, whereas succinate dehydrogenase activity and complex II were preserved. In situ hybridisation of mitochondrial RNA showed depletion of mitochondrial DNA (mtDNA) transcripts in the perifascicular regions. Analysis of mtDNA by next generation deep sequencing and quantitative PCR in affected muscle regions showed an overall reduction of mtDNA copy number particularly in the perifascicular regions. CONCLUSION: The respiratory chain dysfunction in DM muscle is associated with mtDNA depletion causing deficiency of complexes I and IV, which are partially encoded by mtDNA, whereas complex II, which is entirely encoded by nuclear DNA, is preserved. The depletion of mtDNA indicates a perturbed replication of mtDNA explaining the muscle pathology and the disturbed aerobic metabolism.


Assuntos
Deficiência de Citocromo-c Oxidase , Dermatomiosite , Adulto , Humanos , Deficiência de Citocromo-c Oxidase/metabolismo , Deficiência de Citocromo-c Oxidase/patologia , Succinato Desidrogenase/análise , Succinato Desidrogenase/metabolismo , Dermatomiosite/patologia , Transporte de Elétrons , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/análise , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Músculo Esquelético/patologia
6.
Am J Physiol Cell Physiol ; 322(1): C86-C93, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34817266

RESUMO

Muscle fibers are syncytial postmitotic cells that can acquire exogenous nuclei from resident muscle stem cells, called satellite cells. Myonuclei are added to muscle fibers by satellite cells during conditions such as load-induced hypertrophy. It is difficult to dissect the molecular contributions of resident versus satellite cell-derived myonuclei during adaptation due to the complexity of labeling distinct nuclear populations in multinuclear cells without label transference between nuclei. To sidestep this barrier, we used a genetic mouse model where myonuclear DNA can be specifically and stably labeled via nonconstitutive H2B-GFP at any point in the lifespan. Resident myonuclei (Mn) were GFP-tagged in vivo before 8 wk of progressive weighted wheel running (PoWeR) in adult mice (>4-mo-old). Resident + satellite cell-derived myonuclei (Mn+SC Mn) were labeled at the end of PoWeR in a separate cohort. Following myonuclear isolation, promoter DNA methylation profiles acquired with low-input reduced representation bisulfite sequencing (RRBS) were compared to deduce epigenetic contributions of satellite cell-derived myonuclei during adaptation. Resident myonuclear DNA has hypomethylated promoters in genes related to protein turnover, whereas the addition of satellite cell-derived myonuclei shifts myonuclear methylation profiles to favor transcription factor regulation and cell-cell signaling. By comparing myonucleus-specific methylation profiling to previously published single-nucleus transcriptional analysis in the absence (Mn) versus the presence of satellite cells (Mn+SC Mn) with PoWeR, we provide evidence that satellite cell-derived myonuclei may preferentially supply specific ribosomal proteins to growing myofibers and retain an epigenetic "memory" of prior stem cell identity. These data offer insights on distinct epigenetic myonuclear characteristics and contributions during adult muscle growth.


Assuntos
Adaptação Fisiológica/fisiologia , Núcleo Celular/metabolismo , Epigênese Genética/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Condicionamento Físico Animal/fisiologia , Coloração e Rotulagem/métodos , Animais , Núcleo Celular/química , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Fibras Musculares Esqueléticas/química , Condicionamento Físico Animal/métodos , Células Satélites de Músculo Esquelético/química , Células Satélites de Músculo Esquelético/metabolismo , Fatores de Tempo
7.
Neuropathol Appl Neurobiol ; 48(3): e12785, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34847621

RESUMO

AIMS: Dystrophin, the protein product of the DMD gene, plays a critical role in muscle integrity by stabilising the sarcolemma during contraction and relaxation. The DMD gene is vulnerable to a variety of mutations that may cause complete loss, depletion or truncation of the protein, leading to Duchenne and Becker muscular dystrophies. Precise and reproducible dystrophin quantification is essential in characterising DMD mutations and evaluating the outcome of efforts to induce dystrophin through gene therapies. Immunofluorescence microscopy offers high sensitivity to low levels of protein expression along with confirmation of localisation, making it a critical component of quantitative dystrophin expression assays. METHODS: We have developed an automated and unbiased approach for precise quantification of dystrophin immunofluorescence in muscle sections. This methodology uses microscope images of whole-tissue sections stained for dystrophin and spectrin to measure dystrophin intensity and the proportion of dystrophin-positive coverage at the sarcolemma of each muscle fibre. To ensure objectivity, the thresholds for dystrophin and spectrin are derived empirically from non-sarcolemmal signal intensity within each tissue section. Furthermore, this approach is readily adaptable for measuring fibre morphology and other tissue markers. RESULTS: Our method demonstrates the sensitivity and reproducibility of this quantification approach across a wide range of dystrophin expression in both dystrophinopathy patient and healthy control samples, with high inter-operator concordance. CONCLUSION: As efforts to restore dystrophin expression in dystrophic muscle bring new potential therapies into clinical trials, this methodology represents a valuable tool for efficient and precise analysis of dystrophin and other muscle markers that reflect treatment efficacy.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Biópsia , Distrofina/análise , Imunofluorescência , Humanos , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Reprodutibilidade dos Testes
8.
Am J Physiol Cell Physiol ; 322(1): C94-C110, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34852208

RESUMO

Following anabolic stimuli (mechanical loading and/or amino acid provision), the mechanistic target of rapamycin complex 1 (mTORC1), a master regulator of protein synthesis, translocates toward the cell periphery. However, it is unknown if mTORC1-mediated phosphorylation events occur in these peripheral regions or before translocation (i.e., in central regions). We therefore aimed to determine the cellular location of a mTORC1-mediated phosphorylation event, RPS6Ser240/244, in human skeletal muscle following anabolic stimuli. Fourteen young, healthy males either ingested a protein-carbohydrate beverage (0.25 g/kg protein and 0.75 g/kg carbohydrate) alone [n = 7; 23 ± 5 yr; 76.8 ± 3.6 kg; and 13.6 ± 3.8% body fat (BF), FED] or following a whole body resistance exercise bout (n = 7; 22 ± 2 yr; 78.1 ± 3.6 kg; and 12.2 ± 4.9%BF, EXFED). Vastus lateralis muscle biopsies were obtained at rest (PRE) and 120 and 300 min following anabolic stimuli. RPS6Ser240/244 phosphorylation measured by immunofluorescent staining or immunoblot was positively correlated (r = 0.76, P < 0.001). Peripheral staining intensity of p-RPS6Ser240/244 increased above PRE in both FED and EXFED at 120 min (∼54% and ∼138%, respectively, P < 0.05) but was greater in EXFED at both poststimuli time points (P < 0.05). The peripheral-to-central ratio of p-RPS6240/244 staining displayed a similar pattern, even when corrected for total RPS6 distribution, suggesting RPS6 phosphorylation occurs to a greater extent in the periphery of fibers. Moreover, p-RPS6Ser240/244 intensity within paxillin-positive regions, a marker of focal adhesion complexes, was elevated at 120 min irrespective of stimulus (P = 0.006) before returning to PRE at 300 min. These data confirm that RPS6Ser240/244 phosphorylation occurs in the region of human muscle fibers to which mTOR translocates following anabolic stimuli and identifies focal adhesion complexes as a potential site of mTORC1 regulation in vivo.


Assuntos
Carboidratos da Dieta/administração & dosagem , Proteínas na Dieta/administração & dosagem , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Treinamento de Força/métodos , Proteína S6 Ribossômica/metabolismo , Adulto , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/análise , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/química , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Proteína S6 Ribossômica/análise , Adulto Jovem
9.
Am J Physiol Cell Physiol ; 322(2): C246-C259, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34910603

RESUMO

Extracellular vesicles (EVs) are biomarkers and modifiers of human disease. EVs secreted by insulin-responsive tissues like skeletal muscle (SkM) and white adipose tissue (WAT) contribute to metabolic health and disease but the relative abundance of EVs from these tissues has not been directly examined. Human Protein Atlas data and directly measuring EV secretion in mouse SkM and WAT using an ex vivo tissue explant model confirmed that SkM tissue secretes more EVs than WAT. Differences in EV secretion between SkM and WAT were not due to SkM contraction but may be explained by differences in tissue metabolic capacity. We next examined how many EVs secreted from SkM tissue ex vivo and in vivo are myofiber-derived. To do this, a SkM myofiber-specific dual fluorescent reporter mouse was created. Spectral flow cytometry revealed that SkM myofibers are a major source of SkM tissue-derived EVs ex vivo and EV immunocapture indicates that ∼5% of circulating tetraspanin-positive EVs are derived from SkM myofibers in vivo. Our findings demonstrate that 1) SkM secretes more EVs than WAT, 2) many SkM tissue EVs are derived from SkM myofibers, and 3) SkM myofiber-derived EVs reach the circulation in vivo. These findings advance our understanding of EV secretion between metabolically active tissues and provide direct evidence that SkM myofibers secrete EVs that can reach the circulation in vivo.


Assuntos
Tecido Adiposo Branco/química , Tecido Adiposo Branco/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/metabolismo , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Imagem Óptica/métodos , Estudos Retrospectivos
10.
Carbohydr Polym ; 272: 118444, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34420709

RESUMO

In this study, a fully aligned microfibrous structure fabricated using fibrin-assisted alginate bioink and electrohydrodynamic direct-printing was proposed for skeletal muscle tissue engineering. To safely construct the aligned alginate/fibrin microfibrous structure laden with myoblasts or endothelial cells, various printing conditions, such as an applied electric field, distance between the nozzle and target, and nozzle moving speed, were selected appropriately. Furthermore, to accelerate the formation of myotubes more efficiently, the alginate/fibrin bioink with vascular endothelial cells was co-printed into a spatially patterned structure within a myoblast-laden structure. The myoblast-laden structure co-cultured with endothelial cells presented fully aligned myotube formation and significantly greater myogenic differentiation compared to the myoblast-laden structure without the endothelial cells owing to the more abundant secretion of angiogenic cytokines. Also, when adipose stem cell- and endothelial cell-laden fibrous structure was implanted in a mouse volumetric muscle loss model, accelerated volumetric muscle repair was observed compared to the defect model. Based on the results, this study demonstrates an alginate-based bioink and new bio-fabricating method to obtain microfibrous cell-laden alginate/fibrin structures with mechanically stable and topographical cues. The proposed method can provide a myoblast/endothelial cell-laden fibrous alginate structure to efficiently induce engineering of skeletal muscle tissue, which could be used in muscle-on-a-chip or recovering structures of volumetric muscle defects.


Assuntos
Alginatos/química , Fibras Musculares Esqueléticas/metabolismo , Mioblastos Esqueléticos/metabolismo , Impressão Tridimensional , Engenharia Tecidual/métodos , Tecidos Suporte/química , Tecido Adiposo/metabolismo , Animais , Bioimpressão/métodos , Diferenciação Celular , Técnicas de Cocultura/métodos , Células Endoteliais/metabolismo , Feminino , Fibrina/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Tinta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/química , Músculo Esquelético/metabolismo , Mioblastos Esqueléticos/química , Células-Tronco/metabolismo
11.
Nat Commun ; 12(1): 5182, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34462443

RESUMO

Manmade high-performance polymers are typically non-biodegradable and derived from petroleum feedstock through energy intensive processes involving toxic solvents and byproducts. While engineered microbes have been used for renewable production of many small molecules, direct microbial synthesis of high-performance polymeric materials remains a major challenge. Here we engineer microbial production of megadalton muscle titin polymers yielding high-performance fibers that not only recapture highly desirable properties of natural titin (i.e., high damping capacity and mechanical recovery) but also exhibit high strength, toughness, and damping energy - outperforming many synthetic and natural polymers. Structural analyses and molecular modeling suggest these properties derive from unique inter-chain crystallization of folded immunoglobulin-like domains that resists inter-chain slippage while permitting intra-chain unfolding. These fibers have potential applications in areas from biomedicine to textiles, and the developed approach, coupled with the structure-function insights, promises to accelerate further innovation in microbial production of high-performance materials.


Assuntos
Conectina/química , Conectina/genética , Escherichia coli/metabolismo , Fibras Musculares Esqueléticas/química , Animais , Fenômenos Biomecânicos , Conectina/metabolismo , Cristalização , Escherichia coli/genética , Expressão Gênica , Peso Molecular , Fibras Musculares Esqueléticas/metabolismo , Polimerização , Polímeros/química , Polímeros/metabolismo , Dobramento de Proteína , Coelhos
12.
Physiol Rep ; 9(13): e14927, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34197700

RESUMO

Cachexia, a condition prevalent in many chronically ill patients, is characterized by weight loss, fatigue, and decreases in muscle mass and function. Cachexia is associated with tumor burden and disease-related malnutrition, but other studies implicate chemotherapy as being causative. We investigated the effects of a chemotherapy drug cocktail on myofibrillar protein abundance and synthesis, anabolic signaling mechanisms, and substrate availability. On day 4 of differentiation, L6 myotubes were treated with vehicle (1.4 µl/ml DMSO) or a chemotherapy drug cocktail (a mixture of cisplatin [20 µg/ml], leucovorin [10 µg/ml], and 5-fluorouracil [5-FLU; 50 µg/ml]) for 24-72 h. Compared to myotubes treated with vehicle, those treated with the drug cocktail showed 50%-80% reductions in the abundance of myofibrillar proteins, including myosin heavy chain-1, troponin, and tropomyosin (p < 0.05). Cells treated with only a mixture of cisplatin and 5-FLU had identical reductions in myofibrillar protein abundance. Myotubes treated with the drug cocktail also showed >50% reductions in the phosphorylation of AKTSer473 and of mTORC1 substrates ribosomal protein S6Ser235/236 , its kinase S6K1Thr389 and eukaryotic translation initiation factor 4E-binding protein 1 (all p < 0.05). Drug treatment impaired peptide chain initiation in myofibrillar protein fractions and insulin-stimulated glucose uptake (p = 0.06) but increased the expression of autophagy markers beclin-1 and microtubule-associated proteins 1A/1B light chain 3B (p < 0.05), and of apoptotic marker, cleaved caspase 3 (p < 0.05). Drug treatment reduced the expression of mitochondrial markers cytochrome oxidase and succinate dehydrogenase (p < 0.05). The observed profound negative effects of this chemotherapy drug cocktail on myotubes underlie a need for approaches that can reduce the negative effects of these drugs on muscle metabolism.


Assuntos
Fibras Musculares Esqueléticas/efeitos dos fármacos , Proteínas Musculares/efeitos dos fármacos , Animais , Western Blotting , Caquexia/induzido quimicamente , Células Cultivadas , Cisplatino/administração & dosagem , Cisplatino/farmacologia , Quimioterapia Combinada , Fluoruracila/administração & dosagem , Fluoruracila/farmacologia , Leucovorina/administração & dosagem , Leucovorina/farmacologia , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/ultraestrutura , Proteínas Musculares/análise , Proteínas Musculares/fisiologia , Cadeias Pesadas de Miosina/análise , Ratos , Tropomiosina/análise , Troponina/análise
13.
Nature ; 595(7867): 404-408, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34163073

RESUMO

Congenital myasthenia (CM) is a devastating neuromuscular disease, and mutations in DOK7, an adaptor protein that is crucial for forming and maintaining neuromuscular synapses, are a major cause of CM1,2. The most common disease-causing mutation (DOK71124_1127 dup) truncates DOK7 and leads to the loss of two tyrosine residues that are phosphorylated and recruit CRK proteins, which are important for anchoring acetylcholine receptors at synapses. Here we describe a mouse model of this common form of CM (Dok7CM mice) and a mouse with point mutations in the two tyrosine residues (Dok72YF). We show that Dok7CM mice had severe deficits in neuromuscular synapse formation that caused neonatal lethality. Unexpectedly, these deficits were due to a severe deficiency in phosphorylation and activation of muscle-specific kinase (MUSK) rather than a deficiency in DOK7 tyrosine phosphorylation. We developed agonist antibodies against MUSK and show that these antibodies restored neuromuscular synapse formation and prevented neonatal lethality and late-onset disease in Dok7CM mice. These findings identify an unexpected cause for disease and a potential therapy for both DOK7 CM and other forms of CM caused by mutations in AGRIN, LRP4 or MUSK, and illustrate the potential of targeted therapy to rescue congenital lethality.


Assuntos
Proteínas Musculares/genética , Mutação , Síndromes Miastênicas Congênitas/tratamento farmacológico , Síndromes Miastênicas Congênitas/genética , Envelhecimento , Agrina/genética , Agrina/metabolismo , Animais , Animais Recém-Nascidos , Anticorpos/imunologia , Modelos Animais de Doenças , Feminino , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Masculino , Camundongos , Terapia de Alvo Molecular , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Síndromes Miastênicas Congênitas/imunologia , Fosforilação , Fosfotirosina/genética , Fosfotirosina/metabolismo , Proteínas Proto-Oncogênicas c-crk/metabolismo , Receptores Proteína Tirosina Quinases/agonistas , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/imunologia , Receptores Proteína Tirosina Quinases/metabolismo , Recidiva , Sinapses/metabolismo
14.
Sci Rep ; 11(1): 13354, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172812

RESUMO

To evaluate the relationship between muscle fiber characteristics and the quality of frozen/thawed pork meat, four different muscles, M. longissimus thoracis et lumborum (LTL), M. psoas major (PM), M. semimembranosus (SM), and M. semitendinosus (ST), were analyzed from twenty carcasses. Meat color values (lightness, redness, yellowness, chroma, and hue) changed due to freezing/thawing in LTL, which showed larger IIAX, IIX, and IIXB fibers than found in SM (P < 0.05). SM and ST showed a significant decrease in purge loss and an increase in shear force caused by freezing/thawing (P < 0.05). Compared with LTL, SM contains more type IIXB muscle fibers and ST had larger muscle fibers I and IIA (P < 0.05). PM was the most stable of all muscles, since only its yellowness and chroma were affected by freezing/thawing (P < 0.05). These results suggest that pork muscle fiber characteristics of individual cuts must be considered to avoid quality deterioration during frozen storage.


Assuntos
Carne/análise , Fibras Musculares Esqueléticas/química , Músculo Esquelético/química , Animais , Cor , Congelamento , Suínos
15.
Food Chem ; 349: 129205, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33578246

RESUMO

To understand muscular steatosis observed in beef carcasses, physicochemical and histochemical characteristics were compared between abnormal (massive fatty replaced) and normal regions of beef striploin. Fat content in the abnormal region (48.02%) was approximately twice than that in the normal region (22.01%). However, fatty acids did not show significant (P > 0.05) differences in their compositions between the two regions. Tenderness was significantly (P < 0.05) higher in the abnormal region. However, other meat quality traits were not significantly (P > 0.05) different between the two regions. Massive accumulation of adipocytes was accompanied by muscle fiber atrophy regardless of muscle fiber types. Without a change in total muscle fiber density, oxidative fiber composition was significantly increased, whereas glycolytic fiber composition was decreased (P < 0.05). These findings suggest that adipogenic transdifferentiation and muscle fiber type switching can occur within the muscle due to muscular steatosis.


Assuntos
Adipócitos/citologia , Fenômenos Químicos , Músculo Esquelético/citologia , Animais , Bovinos , Ácidos Graxos/química , Glicólise , Carne/análise , Fibras Musculares Esqueléticas/química , Músculo Esquelético/metabolismo , Oxirredução , Fenótipo
16.
Sci Rep ; 11(1): 1128, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441839

RESUMO

Emerging and promising therapeutic interventions for Duchenne muscular dystrophy (DMD) are confounded by the challenges of quantifying dystrophin. Current approaches have poor precision, require large amounts of tissue, and are difficult to standardize. This paper presents an immuno-mass spectrometry imaging method using gadolinium (Gd)-labeled anti-dystrophin antibodies and laser ablation-inductively coupled plasma-mass spectrometry to simultaneously quantify and localize dystrophin in muscle sections. Gd is quantified as a proxy for the relative expression of dystrophin and was validated in murine and human skeletal muscle sections following k-means clustering segmentation, before application to DMD patients with different gene mutations where dystrophin expression was measured up to 100 µg kg-1 Gd. These results demonstrate that immuno-mass spectrometry imaging is a viable approach for pre-clinical to clinical research in DMD. It rapidly quantified relative dystrophin in single tissue sections, efficiently used valuable patient resources, and may provide information on drug efficacy for clinical translation.


Assuntos
Distrofina/análise , Distrofia Muscular de Duchenne/metabolismo , Músculo Quadríceps/química , Adolescente , Idoso de 80 Anos ou mais , Animais , Criança , Distrofina/genética , Distrofina/imunologia , Feminino , Imunofluorescência , Gadolínio , Humanos , Imuno-Histoquímica , Masculino , Espectrometria de Massas , Camundongos , Fibras Musculares Esqueléticas/química , Distrofia Muscular de Duchenne/genética , Mutação
17.
ACS Appl Bio Mater ; 4(2): 1720-1730, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014518

RESUMO

This paper reports an approach for the fabrication of shape-changing bilayered scaffolds, which allow the growth of aligned skeletal muscle cells, using a combination of 3D printing of hyaluronic acid hydrogel, melt electrowriting of thermoplastic polycaprolactone-polyurethane elastomer, and shape transformation. The combination of the selected materials and fabrication methods allows a number of important advantages such as biocompatibility, biodegradability, and suitable mechanical properties (elasticity and softness of the fibers) similar to those of important components of extracellular matrix (ECM), which allow proper cell alignment and shape transformation. Myoblasts demonstrate excellent viability on the surface of the shape-changing bilayer, where they occupy space between fibers and align along them, allowing efficient cell patterning inside folded structures. The bilayer scaffold is able to undergo a controlled shape transformation and form multilayer scroll-like structures with cells encapsulated inside. Overall, the importance of this approach is the fabrication of tubular constructs with a patterned interior that can support the proliferation and alignment of muscle cells for muscle tissue regeneration.


Assuntos
Materiais Biocompatíveis/química , Elastômeros/química , Hidrogéis/química , Fibras Musculares Esqueléticas/química , Impressão Tridimensional , Engenharia Tecidual , Animais , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Elastômeros/farmacologia , Matriz Extracelular/química , Hidrogéis/farmacologia , Teste de Materiais , Camundongos , Tecidos Suporte/química
18.
Annu Rev Anim Biosci ; 9: 355-377, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33338390

RESUMO

Fresh meat quality is greatly determined through biochemical changes occurring in the muscle during its conversion to meat. These changes are key to imparting a unique set of characteristics on fresh meat, including its appearance, ability to retain moisture, and texture. Skeletal muscle is an extremely heterogeneous tissue composed of different types of fibers that have distinct contractile and metabolic properties. Fiber type composition determines the overall biochemical and functional properties of the muscle tissue and, subsequently, its quality as fresh meat. Therefore, changing muscle fiber profile in living animals through genetic selection or environmental factors has the potential to modulate fresh meat quality. We provide an overview of the biochemical processes responsible for the development of meat quality attributes and an overall understanding of the strong relationship between muscle fiber profile and meat quality in different meat species.


Assuntos
Qualidade dos Alimentos , Carne/análise , Fibras Musculares Esqueléticas/metabolismo , Animais , Fibras Musculares Esqueléticas/química , Músculo Esquelético/fisiologia
19.
Nat Commun ; 11(1): 6288, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33293572

RESUMO

Muscle fibers are the largest cells in the body, and one of its few syncytia. Individual cell sizes are variable and adaptable, but what governs cell size has been unclear. We find that muscle fibers are DNA scarce compared to other cells, and that the nuclear number (N) adheres to the relationship N = aVb where V is the cytoplasmic volume. N invariably scales sublinearly to V (b < 1), making larger cells even more DNA scarce. N scales linearly to cell surface in adult humans, in adult and developing mice, and in mice with genetically reduced N, but in the latter the relationship eventually fails when they reach adulthood with extremely large myonuclear domains. Another exception is denervation-atrophy where nuclei are not eliminated. In conclusion, scaling exponents are remarkably similar across species, developmental stages and experimental conditions, suggesting an underlying scaling law where DNA-content functions as a limiter of muscle cell size.


Assuntos
Núcleo Celular/química , Tamanho Celular , DNA/análise , Fibras Musculares Esqueléticas/citologia , Músculo Esquelético/crescimento & desenvolvimento , Adulto , Animais , Biópsia , Citoplasma , Feminino , Voluntários Saudáveis , Humanos , Microscopia Intravital , Masculino , Camundongos , Microscopia Confocal , Fibras Musculares Esqueléticas/química , Músculo Esquelético/citologia , Músculo Esquelético/patologia , Análise de Célula Única , Adulto Jovem
20.
Int J Mol Sci ; 21(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752098

RESUMO

Muscle biomechanics relies on active motor protein assembly and passive strain transmission through cytoskeletal structures. The desmin filament network aligns myofibrils at the z-discs, provides nuclear-sarcolemmal anchorage and may also serve as memory for muscle repositioning following large strains. Our previous analyses of R349P desmin knock-in mice, an animal model for the human R350P desminopathy, already depicted pre-clinical changes in myofibrillar arrangement and increased fiber bundle stiffness. As the effect of R349P desmin on axial biomechanics in fully differentiated single muscle fibers is unknown, we used our MyoRobot to compare passive visco-elasticity and active contractile biomechanics in single fibers from fast- and slow-twitch muscles from adult to senile mice, hetero- or homozygous for the R349P desmin mutation with wild type littermates. We demonstrate that R349P desmin presence predominantly increased axial stiffness in both muscle types with a pre-aged phenotype over wild type fibers. Axial viscosity and Ca2+-mediated force were largely unaffected. Mutant single fibers showed tendencies towards faster unloaded shortening over wild type fibers. Effects of aging seen in the wild type appeared earlier in the mutant desmin fibers. Our single-fiber experiments, free of extracellular matrix, suggest that compromised muscle biomechanics is not exclusively attributed to fibrosis but also originates from an impaired intermediate filament network.


Assuntos
Envelhecimento/genética , Desmina/genética , Fibras Musculares Esqueléticas/química , Miofibrilas/genética , Envelhecimento/fisiologia , Animais , Fenômenos Biomecânicos , Cálcio/metabolismo , Citoesqueleto/química , Citoesqueleto/genética , Desmina/química , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Humanos , Filamentos Intermediários/química , Filamentos Intermediários/genética , Camundongos , Contração Muscular/genética , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Mutação/genética , Miofibrilas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...